Suddenly, It Looks Like We’re in a Golden Age for Medicine
Ozempic and Wegovy have already changed the landscape for obesity in America — a breakthrough that has been described and debated so much in terms of cosmetic benefits and medical moral hazard that it can be easy to forget that obesity is among the largest risk factors for preventable death in the United States. Next-generation alternatives may prove even more effective, and there are signs of huge off-label implications: At least anecdotally, in some patients the drugs appear to curb compulsive behavior across a range of hard-to-treat addictions.
And although the very first person to receive Crispr gene therapy in the United States received it just four years ago, for sickle-cell disease, it has since been rolled out for testing on congenital blindness, heart disease, diabetes, cancer and H.I.V. So far only two applications for such treatments have been submitted to the F.D.A., but all told, some 400 million people worldwide are afflicted by one or more diseases arising from single-gene mutations that would be theoretically simple for Crispr to fix. And when Doudna allows herself to imagine applications a decade or two down the line, the possibilities sound almost intoxicating: offering single-gene protection against high cholesterol and therefore coronary artery disease, for instance, or, in theory, inserting a kind of genetic prophylaxis against Alzheimer’s or dementia.
‘Can we actually do it?’
In January, a much-talked-about paper in Nature suggested that the rate of what the authors called disruptive scientific breakthroughs was steadily declining over time — that, partly as a result of dysfunctional academic pressures, researchers are more narrowly specialized than in the past and often tinkering around the margins of well-understood science.
But when it comes to the arrival of new vaccines and treatments, the opposite story seems more true: whole branches of research, cultivated across decades, finally bearing real fruit. Does this mean we are riding an exponential curve upward toward radical life extension and the total elimination of cancer? No. The advances are more piecemeal and scattered than that, and indeed there are those who believe that progress should be moving faster still.
In the midst of the pandemic, a number of calls for greater acceleration have been issued, some emphasizing the need to reduce costs for drug development, which have doubled every decade since the 1970s, perhaps by redesigning clinical trials or employing what are called human-challenge trials, or by streamlining the drug-approval process. Graham, who is now a senior adviser for global health equity at the Morehouse School of Medicine, emphasizes questions of global distribution and access: Will the new technologies actually get where they are needed most? “The biology and the science that we need is already in place,” he says. “The question now to me is: Can we actually do it?”